

## Biological control of rabbits in Australia – The co-evolutionary arms race between rabbits and their viruses

CSIRO HEALTH & BIOSECURITY www.csiro.au



# **Rabbits in Australia**

- Biological control of rabbits history
  - Myxoma virus
  - Rabbit Haemorrhagic Disease Virus (RHDV)
  - host pathogen co-evolution
- current biocontrol initiatives
- other rabbit viruses



## The European rabbit (*Oryctolagus cuniculus*): Australia's rabbit plague

- Native to Europe
- 26 rabbits (released in VIC 1859)
- Colonised continent in 70 years
- Ideal environment
  - •Few diseases
  - •Fewer predators







# A perfect invader

- Gestation period 28 days
- Mating same day of giving birth
- Litter size 4-8
- Sexual maturity >3 months
- Young disperse widely
- Peak estimate: 0.5 10 billion rabbits
- Massive economic and ecological impacts





Rabbits impact over 300 EPBC Act listed threatened species and nine ecological communities. This includes 44 animal species (15 birds, 20 mammals, 6 reptiles, 1 invertebrate, 1 fish and 1 amphibian) and 260 listed plant

Species (Rabbit TAP 2016)

Rabbit exclosure on Macquarie Island

Image: Brian Cooke

# **Coventional Control of rabbits**

- Shooting/trapping
- Fencing
- Warren ripping
- Warren fumigation
- Poisoning

=> ineffective

#### Australia in 1930:



## What is biological control?

Biological control involves the use of another organism—predators, microparasites (e.g. bacteria, viruses, protozoa, fungi), or macroparasites (e.g. helminths, arthropods)—to control a pest population.

#### **Efficacious**

Reduces pest populations/impact Safe (species specific)

Does not affect non-target species

#### Humane

Suffering minimised

#### **Self-disseminating**

**Effective transmission** 

#### **Persists in environment**

Causes recurrent outbreaks without need to re-apply

#### Socially acceptable

Public acceptability



### Biological control of the European rabbit (*Oryctolagus cuniculus*) - *early days*

1887:

Henry Parkes NSW-Government promised £24,000 rewards for eradication of rabbits

Pasteurella multocida (Chicken cholera)

Not species specific, did not transmit





Louis Pasteur 1822-95



Adrien Loir 1862-1941



## Biological control of rabbits #1: Myxoma Virus (MYXV)



#### **MYXV:** an emerging disease of rabbits Family: *Poxviridae*, Genus: *Leporipoxvirus*, *ds-DNA*

Natural host: Tapeti (Sylvilagus brasiliensis) Mild infection Jumped species to European rabbit (*Oryctolagus cuniculus*) Highly virulent disease





## Myxoma virus initial spread

- Tested in Australia from 1937Release in 1950, initial spread slow
- Transmitted by mosquitoes (mechanical transmission)
- Spread limited to areas where vectors are available.
- Subsequent introduction of rabbit fleas
  - -European rabbit flea *(Spilopsyllus cuniculi)* -Arid adapted Spanish rabbit flea *(Xenopsylla cunicularis)*





# Myxoma virus host-virus co-evolution

- •Geared towards maximum transmission by biting insects:
  - High virus loads in skin lesions
  - Increased survival rates and survival times



Outcomes: •Reduced effectiveness as biological control agent •Increase in rabbit numbers •More severe Disease



## **Biological control of rabbits #2: Rabbit** Haemorrhagic Disease Virus



### **RHDV** Family: *Caliciviridae*, Genus: *Lagovirus*, *small RNA virus*



- Emerging disease of rabbits
- Likely evolved from non-pathogenic ancestors via mutation
- First described in China in 1984
- •>95% case fatality

- Infectious hepatitis
- Massive hepatic necrosis and encephalopathy
- Disseminated Intravascular Coagulation
- Death usually within 36-72h post infection
- Short (if any) clinical signs
- Young rabbits innately resistant to lethal disease
- Does not grow in cell culture





# **Animal Welfare**

Is an integral component of pest animal control

Factor to be considered when choosing the appropriate tool for pest animal management

-> Weigh options available, including option of doing nothing



#### RELATIVE HUMANENESS OF RABBIT CONTROL METHODS



Workshop on the humaneness of pest animal destruction hosted by the RSPCA

- 1. Shooting (head)
- 2. Shooting (chest)
- 3. 1080 poison
- 4. Pindone anticoagulant
- 5. Chloropicrin
- 6. Phosphine
- 7. Padded foot hold trap
- 8. Warren ripping
- 9. Warren blasting
- **10. RHDV inoculation**
- 11. Baits RHDV
- 12. LPG Warren fumigation

# Scoring Matrix to assess the welfare impacts of approved rabbit control methods

Sharp and Saunders 2012

## **RHDV in Australia**



- Quarantine tests (AAHL) commenced in 1991
- Later: field transmission trials on Wardang Island
- Escaped in 1995 (Fly transmission!)
- Officially released in 1996
- Illegally introduced into NZ 1997

# Highly successful in reducing rabbit populations

#### •-> less effective in cooler climates



## **Interfering benign endemic caliciviruses**

- Following release/escape RHDV was less effective in temperate areas
- Antibodies cross reacting to RHDV found in samples collected before virus release in 1996
- rabbits with these cross-reacting antibodies survived RHDV challenge

=> Hypotheses: Other virus(es) exist that are similar to RHDV but non-pathogenic and act as a partially protective vaccine to RHDV.



- Virus found in in 2007 Causes a non-clinical infection of the gut
- RCV is an <u>imperfect natural vaccine</u> against lethal RHD
  - Up to 50% protection max
  - Transient (approx 2 months)
- Survivors are then immune to RHDV for the rest of their lives



8

Endangered ecological communities affected by rabbits Critically endangered and endangered plants affected by rabbits Critically endangered Golden Sun Moth affected by rabbits Map produced by ERIN, DEWHA 2008

Rabbit distribution



## **Economic benefits of rabbit biocontrol**



# Combined cumulative benefits estimated at \$70 billion to the agricultural industries over 60 years.

(Cooke et al., 2013, Aust Econ Hist Rev)



## **Environmental benefits of RHDV (examples)**

# Large scale landscape recovery (Pedler et al 2016) => Top-down and bottom up effects



241–365% increase in occurrence

Dusky hoppingmouse (Notomys fuscus) Plains mouse (*Pseudomys* australis)

Crest-tailed mulgara (*Dasycercus cristicauda*) 70 fold increase in occurrence 20 fold range extension



#### **Photo: David Lord**

# 2000

# 2012

**Photo: David Lord** 

#### Photos: Tanja Strive Hattah Kulkyne National Park 2009



## **Biological control: Not a silver bullet !**



An ongoing battle (host-pathogen co-evolution)

(Cooke et al., 2013, Aust Econ Hist Rev)

# Host Pathogen Coevolution of RHDV?



Are Australian rabbits developing genetic resistance to infection with RHDV?



Peter Elsworth & Brian Cooke University of Canberra PhD student QLD-DPI



### **Evolution of RHDV in Australia**



Despite >3000 releases of the original Czech strain only a single viral lineage has sustained field transmission in the long term

> Kovaliski et al., Mol Ecol 2014 Eden et al., J Virol 2015





80% 70% 60% 50% 40% 30% 20% 10% 0% Whetstone Turretfield Bulloo Domestic Hattah Flinders **Bathurst** Yambuk rabbits **Kulkyne** (QLD) (SA) ranges (SA) (NSW) **Downs** (VIC) (VIC) (QLD)

#### % Infected

Yet field mortality of RHDV has remained high in these populations....

Elsworth et al, Epidemiol Inf 2012



# Is RHDV evolving to counter developing resistance?







CSIR

**Oral infections (high dose)** 



### **Survival curves**



CSIRO

## Virus load in the liver



CSIRC



### **Cumulative virus produced in dead rabbits**



## **More recent field strains**

 Kill more rabbits
Faster
Produce higher titres of infectious virus in the liver (<60h)</li>

### **RHDV transmission**

- **1.** Contact (shedding) (Morisse et al 1991)
- **2.** Mechanical insect transmission (flies feeding on carcasses) (Asgari et al 1999

McColl et al 2000)



### Why is RHDV evolving to maintain high virulence?



### Why is RHDV evolving to maintain high virulence?

TIT INTE

- Increases likelihood for mechanical insect transmission
- Increases likelihood of delivering a higher dose of infectious virus
  - => possible mechanism to overcome increased resistance to infection
- Selection towards maximum transmissibility (similar to MYXV)
- Rabbit carcass is main source of virus transmission (not the diseased animal)

# How can such high case fatality rates be sustainable?

- Population immunity
- Young rabbits innately resistant to lethal infection
- (but become infected and seroconvert)
- 100% case fatality in susceptible adult rabbits ≠ 100% mortality at population level
- Adult rabbits 'dispensable'



#### What's next?



Year

# "K5": RHD-Boost

#### K5: RHDVa (Korea) proposed for release

(performed better in genetically resistant wild rabbits and cross protection of non-pathogenic caliciviruses)



- APVMA approval, release planned for Autumn 2017 (=NOW!)
  - >18 paired sites with intensive pre- and post release monitoring: Quarterly shot samples (n=20, serum, tissues, spotlight counts) since
- Expected to slow increase in rabbit numbers (NOT like initial impact)



### "K5": RHD-Boost



**Plus >600** 

# Feral Scan App: Rabbit Scan







# "K5": RHD-Boost



| each rab   | bit         |         |   | Submi |
|------------|-------------|---------|---|-------|
| 6. Notes   |             |         |   |       |
|            |             |         |   |       |
| 7. Email a | Iddress     |         |   |       |
| 8. Upload  | l a nhot    | lograph |   |       |
| o. opioa   | a di parior | ographi |   |       |
| _          |             |         |   |       |
|            |             |         |   |       |
|            |             |         | 3 |       |
|            |             |         |   |       |

3:36 PM

1 10%



#### What else is going on? => RHDV2

- A new rabbit calicivirus (related but different)
- Emerged in Europe since 2010
- Can overcome immunity to other strains (to some degree)
- Can kill young rabbits
- Initially reported to be moderately virulent (10-70% case fatality rate)
- Can affect lagomorph species other than rabbits
- Route of entry unclear
- Found in Australia in May 2015

# Autumn (May) 2015

RHDV outbreaks in Australia between May 2015 and October 2016 (domestic and wild)

MT

Australia

Adelaide

Brisbane

NSM

TAS

#### RHDV common field strain New RHDV2

Autumn 2015



AN

# Spring (Oct) 2016



#### **RHDV2 can infect and kill rabbits and hares**

- Several hares found dead in VIC and SA (n=8)
- confirmed to have high loads of RHDV2 in the liver
- Unclear if rare spillover or if hares are an alternative host







Hall et al., 2016



0

#### What we know about RHDV2 in Australia

- Within 18 months RHDV2 has become the dominating strain causing RHDV outbreaks in all states ecxept TAS
- Reports of young and vaccinated rabbits dying
- Pilot studies indicate very high levels of virulence (7/7 died within 4 days)
- Very fortunate to have the national RHDV monitoring network in place!!
- Has enabled excellent sample coverage
- Long term monitoring sites will allow assessment of initial RHDV impact (Analysis in progress)
- Differential diagnostic tools developed: molecular, serology (European collaboration)



### What we don't know about RHDV2 in Australia (and what we need to find out)

- Experimentally quantify
- Virulence (adults + kittens)
- Ability to overcome immunity to other strains (and vice versa)
- Determine efficacy of current vaccine, need a new vaccine!
- Understand field epidemiology, transmission and evolution of RHDV2
- Include flies into monitoring
- Impact on rabbit populations (national monitoring program, in progress)
- Which role do hares play?
- What does all this mean for the planned K5 release?
- Can we harness RHDV2 as a tool?



### **Get involved!**

#### **Download App and monitor**

- Rabbit abundance
- Rabbit control
- Rabbit disease
- If you find a dead rabbit:
- Request a sampling kit!
- (or send me an email)





### Long term outlook?



- Biological control not a silver bullet, but a powerful tool in the arsenal
- Pipeline needed: new or improved controls needed on an ongoing basis (incl biological controls)
- Integrated pest management!
- Blue sky science? -> new revolutionary genetic control tools

### Thank you!



# Tanja.strive@csiro.au

**University of Canberra** 

Brian Cooke

Peter Elsworth (QLD-DEEDI)



University of Sydney

**Eddie Holmes** 

Jackie Mahar



<u>PIRSA</u> Ron Sinclair

Greg Mutze

John Kovaliski

**David Peacock** 

Government of South Australia

Biosecurity SA

Australian Wool

nnovation Limited



